
## DIRECT HETEROARYLATION OF ENAMINES

UDC 547.754'831.04

L. N. Babichenko, A. A. Tolmachev, T. S. Chmilenko, and A. K. Sheinkman

The reaction of enamines with N-heteroaromatic bases in the presence of acylating agents has not been investigated [1, 2].

We have shown that 1,3,3-trimethyl-2-methylene indoline (I) is benzoylated by benzoyl chloride in the presence of pyridine whereas with quinoline and isoquinoline under the same conditions the heteroarylation products III and IV are formed. A similar reaction with 1-morpholinocyclopent-1-ene leads to the corresponding dihydroquinoline and -isoquinoline products V and VI:



The IR and PMR spectra of II are given in [3]. The  $v_{CO}$  band in the IR spectra (KBr) of III-V occurs at 1650 whereas in VI it occurs at 1680 cm<sup>-1</sup>. The PMR spectra (in CDCl<sub>3</sub>) of III and IV showed singlets for the 3-methyl (1.67 and 1.88; 1.78 and 1.88 ppm) and N-methyl (2.80 and 2.82 ppm) groups, doublets for the =CH- group protons (4.25 and 4.78 ppm), and multiplets for the aromatic protons which also contained the 2-H (6.10-7.20 ppm in III) or 1-H signal (5.98-7.41 ppm in IV).

Compound II: mp 133-134°C (heptane), yield 57%.

Compound III: mp 159-160°C (pet. ether), yield 56%.

Compound IV: mp 182-183°C (pet. ether), yield 50%.

Compound V: mp 95-96°C (heptane), yield 35%.

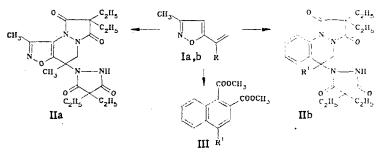
Compound VI: mp 150-151°C (octane), yield 40%.

Elemental analytical data for all compounds obtained were in agreement with those calculated.

## LITERATURE CITED

1. A. N. Kost, S. I. Suminov, and A. K. Sheinkman, "N-Acylpyridinium salts," in: H. Böhme and H. Viehe (eds.), Advances in Organic Chemistry, Vol. 9, Wiley-Interscience,

Dnepropetrovsk Construction Engineering Institute, Dnepropetrovsk 320631. Institute of Organic Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev 252660. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 709-710, May, 1988. Original article submitted July 16, 1987; revision submitted October 30, 1987. New York (1978), Part 2, p. 573.


- O. N. Chupakhin, V. N. Charushin, and E. O. Sidorov, Khim. Geterotsikl. Soedin., No. 5, 666 (1979).
- V. N. Zemlyanoi, I. L. Mushkalo, M. Yu. Kornilov, I. E. Boldeskul, and M. L. Dekhtyar', Khim. Geterotsikl. Soedin., No. 3, 361 (1983).

DIELS-ALDER REACTION OF a-SUBSTITUTED 5-VINYLISOXAZOLES

S. D. Sokolov, O. G. Azarevich, and S. M. Vinogradova

UDC 547.786'661'556.8

3-Methyl-5-vinylisoxazole forms a [4 + 2]-cycloaddition adduct of composition 1:1 with maleic acid under forcing conditions [1]. By contrast, the  $\alpha$ -substituted 5-vinylisoxazoles Ia, b form adducts of 1:2 composition (structures IIa, b) when treated with 4,4-diethylpyr-azolin-3,5-dione under mild conditions (dioxane, 20°C, 3 h). For the  $\alpha$ -methyl substituted vinylisoxazole Ia cycloaddition involves the diene system which includes the  $C_{(4)}-C_{(5)}$  isoxazole bond (as also in [1]). For the competing diene system in the case of the  $\alpha$ -phenyl substituted vinylisoxazole Ib the cycloaddition involved the more reactive styryl diene system giving adduct IIb. Treatment of Ib with dimethylacetylenedicarboxylate leads to reaction at the same diene (m-xylene, refluxing for 5 h) to give adduct III.



I a  $R = CH_3$ ; b  $R = C_6H_3$ ; IIb, III  $R^1 = 3$ -methylisoxazol-5-yl

<u>Adduct IIa</u>. Yield 45%, mp 151-152°C. PMR spectrum  $(CDCl_3)$ : 0.70-0.98 and 1.56-1.90 (m, 12H and 8H,  $CH_3CH_2$ ), 1.93 (s, 3H, 4- $CH_3$ ), 2.70 (s, 3H, 1- $CH_3$ ), 3.63 (d, 1H, 5-H,  $J_{gem} = 14 Hz$ ), 5.52 ppm (d, 1H, 5-H,  $J_{gem} = 14 Hz$ ). Mass spectrum, m/z: 431 (M<sup>+</sup>).

<u>Adduct IIb</u>. Yield 37%, mp 169-170°C. PMR spectrum (DMSO-d<sub>6</sub>): 0.76-0.98 and 1.60-1.94 (m, 12H and 8H, CH<sub>3</sub>CH<sub>2</sub>), 2.17 (s, 3H, 3-CH<sub>3</sub> isoxazole), 4.61 (d, 1H, 5-H, J<sub>gem</sub> = 12.5 Hz), 4.91 (d, 1H, 5-H, J<sub>gem</sub> = 12.5 Hz), 6.00 (s, 1H, 4-H isoxazole), 7.10-7.52 (m, 3H, 7,8,9-H), 8.58 ppm (d, 1H, 10-H). Mass spectrum, m/z: 493 (M<sup>+</sup>).

<u>Adduct III</u>. Yield 13%, mp 170-171°C. PMR spectrum (DMSO-d<sub>6</sub>): 2.39 (s, 3H, 3-CH<sub>3</sub>, isoxazole), 3.94 (s, 3H, COOCH<sub>3</sub>), 4.02 (s, 3H, COOCH<sub>3</sub>), 7.05 (s, 1H, 4-H isoxazole), 7.75-8.10 (m, 3H, 5,6,7-H), 8.27 (s, 1H, 3-H), 8.40 ppm (d, 1H, 8-H). Mass spectrum, m/z: 325 (M<sup>+</sup>).

Compounds IIa, b and III were characterized by elemental analytical data and by IR and UV spectra.

## LITERATURE CITED

1. A. Brandí, F. De Sarlo, A. Gurna, and A. Goti, Heterocycles, 23, 2019 (1985).

S. Ordzhonikidze All Soviet Science Research Chemico-Pharmaceutical Institute, Moscow 119021. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, p. 710, May, 1988. Original article submitted December 4, 1987.